qml.FockState

class FockState(n, wires, do_queue=True, id=None)[source]

Bases: pennylane.operation.CVOperation

Prepares a single Fock state.

Details:

  • Number of wires: 1

  • Number of parameters: 1

  • Gradient recipe: None (not differentiable)

Parameters
  • n (int) – Fock state to prepare

  • wires (Sequence[Any] or Any) – the wire the operation acts on

  • do_queue (bool) – Indicates whether the operator should be immediately pushed into the Operator queue (optional)

  • id (str or None) – String representing the operation (optional)

base_name

If inverse is requested, this is the name of the original operator to be inverted.

basis

The target operation for controlled gates.

batch_size

Batch size of the operator if it is used with broadcasted parameters.

control_wires

Control wires of the operator.

grad_method

grad_recipe

Gradient recipe for the parameter-shift method.

has_matrix

hash

Integer hash that uniquely represents the operator.

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

id

Custom string to label a specific operator instance.

inverse

Boolean determining if the inverse of the operation was requested.

is_hermitian

This property determines if an operator is hermitian.

name

Name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

num_params

num_wires

parameter_frequencies

Returns the frequencies for each operator parameter with respect to an expectation value of the form \(\langle \psi | U(\mathbf{p})^\dagger \hat{O} U(\mathbf{p})|\psi\rangle\).

parameters

Trainable parameters that the operator depends on.

supports_heisenberg

supports_parameter_shift

wires

Wires that the operator acts on.

base_name

If inverse is requested, this is the name of the original operator to be inverted.

basis = None

The target operation for controlled gates. target operation. If not None, should take a value of "X", "Y", or "Z".

For example, X and CNOT have basis = "X", whereas ControlledPhaseShift and RZ have basis = "Z".

Type

str or None

batch_size

Batch size of the operator if it is used with broadcasted parameters.

The batch_size is determined based on ndim_params and the provided parameters for the operator. If (some of) the latter have an additional dimension, and this dimension has the same size for all parameters, its size is the batch size of the operator. If no parameter has an additional dimension, the batch size is None.

Returns

Size of the parameter broadcasting dimension if present, else None.

Return type

int or None

control_wires

Control wires of the operator.

For operations that are not controlled, this is an empty Wires object of length 0.

Returns

The control wires of the operation.

Return type

Wires

grad_method = None
grad_recipe = None

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter \(\phi_k\), the nested list contains elements of the form \([c_i, a_i, s_i]\) where \(i\) is the index of the term, resulting in a gradient recipe of

\[\frac{\partial}{\partial\phi_k}f = \sum_{i} c_i f(a_i \phi_k + s_i).\]

If None, the default gradient recipe containing the two terms \([c_0, a_0, s_0]=[1/2, 1, \pi/2]\) and \([c_1, a_1, s_1]=[-1/2, 1, -\pi/2]\) is assumed for every parameter.

Type

tuple(Union(list[list[float]], None)) or None

has_matrix = False
hash

Integer hash that uniquely represents the operator.

Type

int

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type

dict

id

Custom string to label a specific operator instance.

inverse

Boolean determining if the inverse of the operation was requested.

is_hermitian

This property determines if an operator is hermitian.

name

Name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

By default, this property returns the numbers of dimensions of the parameters used for the operator creation. If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed value.

Returns

Number of dimensions for each trainable parameter.

Return type

tuple

num_params = 1
num_wires = 1
parameter_frequencies

Returns the frequencies for each operator parameter with respect to an expectation value of the form \(\langle \psi | U(\mathbf{p})^\dagger \hat{O} U(\mathbf{p})|\psi\rangle\).

These frequencies encode the behaviour of the operator \(U(\mathbf{p})\) on the value of the expectation value as the parameters are modified. For more details, please see the pennylane.fourier module.

Returns

Tuple of frequencies for each parameter. Note that only non-negative frequency values are returned.

Return type

list[tuple[int or float]]

Example

>>> op = qml.CRot(0.4, 0.1, 0.3, wires=[0, 1])
>>> op.parameter_frequencies
[(0.5, 1), (0.5, 1), (0.5, 1)]

For operators that define a generator, the parameter frequencies are directly related to the eigenvalues of the generator:

>>> op = qml.ControlledPhaseShift(0.1, wires=[0, 1])
>>> op.parameter_frequencies
[(1,)]
>>> gen = qml.generator(op, format="observable")
>>> gen_eigvals = qml.eigvals(gen)
>>> qml.gradients.eigvals_to_frequencies(tuple(gen_eigvals))
(1.0,)

For more details on this relationship, see eigvals_to_frequencies().

parameters

Trainable parameters that the operator depends on.

supports_heisenberg = False
supports_parameter_shift = False
wires

Wires that the operator acts on.

Returns

wires

Return type

Wires

adjoint()

Create an operation that is the adjoint of this one.

compute_decomposition(*params[, wires])

Representation of the operator as a product of other operators (static method).

compute_diagonalizing_gates(*params, wires, …)

Sequence of gates that diagonalize the operator in the computational basis (static method).

compute_eigvals(*params, **hyperparams)

Eigenvalues of the operator in the computational basis (static method).

compute_matrix(*params, **hyperparams)

Representation of the operator as a canonical matrix in the computational basis (static method).

compute_sparse_matrix(*params, **hyperparams)

Representation of the operator as a sparse matrix in the computational basis (static method).

compute_terms(*params, **hyperparams)

Representation of the operator as a linear combination of other operators (static method).

decomposition()

Representation of the operator as a product of other operators.

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

eigvals()

Eigenvalues of the operator in the computational basis (static method).

expand()

Returns a tape that has recorded the decomposition of the operator.

generator()

Generator of an operator that is in single-parameter-form.

get_parameter_shift(idx)

Multiplier and shift for the given parameter, based on its gradient recipe.

heisenberg_expand(U, wire_order)

Expand the given local Heisenberg-picture array into a full-system one.

heisenberg_pd(idx)

Partial derivative of the Heisenberg picture transform matrix.

heisenberg_tr(wire_order[, inverse])

Heisenberg picture representation of the linear transformation carried out by the gate at current parameter values.

inv()

Inverts the operator.

label([decimals, base_label, cache])

A customizable string representation of the operator.

matrix([wire_order])

Representation of the operator as a matrix in the computational basis.

pow(z)

A list of new operators equal to this one raised to the given power.

queue([context])

Append the operator to the Operator queue.

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

sparse_matrix([wire_order])

Representation of the operator as a sparse matrix in the computational basis.

terms()

Representation of the operator as a linear combination of other operators.

adjoint()

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops are equivalent to the inverted operation for unitary gates.

Parameters

do_queue – Whether to add the adjointed gate to the context queue.

Returns

The adjointed operation.

static compute_decomposition(*params, wires=None, **hyperparameters)

Representation of the operator as a product of other operators (static method).

\[O = O_1 O_2 \dots O_n.\]

Note

Operations making up the decomposition should be queued within the compute_decomposition method.

See also

decomposition().

Parameters
  • params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • wires (Iterable[Any], Wires) – wires that the operator acts on

  • hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

decomposition of the operator

Return type

list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)

Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U\).

The diagonalizing gates rotate the state into the eigenbasis of the operator.

Parameters
  • params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • wires (Iterable[Any], Wires) – wires that the operator acts on

  • hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

list of diagonalizing gates

Return type

list[Operator]

static compute_eigvals(*params, **hyperparams)

Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary \(U\), the operator can be reconstructed as

\[O = U \Sigma U^{\dagger},\]

where \(\Sigma\) is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

See also

eigvals() and eigvals()

Parameters
  • params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

eigenvalues

Return type

tensor_like

static compute_matrix(*params, **hyperparams)

Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.

See also

matrix() and matrix()

Parameters
  • params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

matrix representation

Return type

tensor_like

static compute_sparse_matrix(*params, **hyperparams)

Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.

See also

sparse_matrix()

Parameters
  • params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

sparse matrix representation

Return type

scipy.sparse._csr.csr_matrix

static compute_terms(*params, **hyperparams)

Representation of the operator as a linear combination of other operators (static method).

\[O = \sum_i c_i O_i\]

See also

terms()

Parameters
  • params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

list of coefficients and list of operations

Return type

tuple[list[tensor_like or float], list[Operation]]

decomposition()

Representation of the operator as a product of other operators.

\[O = O_1 O_2 \dots O_n\]

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

Returns

decomposition of the operator

Return type

list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U\).

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

Returns

a list of operators

Return type

list[Operator] or None

eigvals()

Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary \(U\), the operator can be reconstructed as

\[O = U \Sigma U^{\dagger},\]

where \(\Sigma\) is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note

When eigenvalues are not explicitly defined, they are computed automatically from the matrix representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from the matrix representation.

Returns

eigenvalues

Return type

tensor_like

expand()

Returns a tape that has recorded the decomposition of the operator.

Returns

quantum tape

Return type

QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

\[U(\phi) = e^{i\phi (0.5 Y + Z\otimes X)}\]

we get the generator

>>> U.generator()
  (0.5) [Y0]
+ (1.0) [Z0 X1]

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

get_parameter_shift(idx)

Multiplier and shift for the given parameter, based on its gradient recipe.

Parameters

idx (int) – parameter index within the operation

Returns

list of multiplier, coefficient, shift for each term in the gradient recipe

Return type

list[[float, float, float]]

Note that the default value for shift is None, which is replaced by the default shift \(\pi/2\).

heisenberg_expand(U, wire_order)

Expand the given local Heisenberg-picture array into a full-system one.

Parameters
  • U (array[float]) – array to expand (expected to be of the dimension 1+2*self.num_wires)

  • wire_order (Wires) – global wire order defining which subspace the operator acts on

Raises

ValueError – if the size of the input matrix is invalid or num_wires is incorrect

Returns

expanded array, dimension 1+2*num_wires

Return type

array[float]

heisenberg_pd(idx)

Partial derivative of the Heisenberg picture transform matrix.

Computed using grad_recipe.

Parameters

idx (int) – index of the parameter with respect to which the partial derivative is computed.

Returns

partial derivative

Return type

array[float]

heisenberg_tr(wire_order, inverse=False)

Heisenberg picture representation of the linear transformation carried out by the gate at current parameter values.

Given a unitary quantum gate \(U\), we may consider its linear transformation in the Heisenberg picture, \(U^\dagger(\cdot) U\).

If the gate is Gaussian, this linear transformation preserves the polynomial order of any observables that are polynomials in \(\mathbf{r} = (\I, \x_0, \p_0, \x_1, \p_1, \ldots)\). This also means it maps \(\text{span}(\mathbf{r})\) into itself:

\[U^\dagger \mathbf{r}_i U = \sum_j \tilde{U}_{ij} \mathbf{r}_j\]

For Gaussian CV gates, this method returns the transformation matrix for the current parameter values of the Operation. The method is not defined for non-Gaussian (and non-CV) gates.

Parameters
  • wire_order (Wires) – global wire order defining which subspace the operator acts on

  • inverse (bool) – if True, return the inverse transformation instead

Raises

RuntimeError – if the specified operation is not Gaussian or is missing the _heisenberg_rep method

Returns

\(\tilde{U}\), the Heisenberg picture representation of the linear transformation

Return type

array[float]

inv()

Inverts the operator.

This method concatenates a string to the name of the operation, to indicate that the inverse will be used for computations.

Any subsequent call of this method will toggle between the original operation and the inverse of the operation.

Returns

operation to be inverted

Return type

Operator

label(decimals=None, base_label=None, cache=None)[source]

A customizable string representation of the operator.

Parameters
  • decimals=None (int) – If None, no parameters are included. Else, specifies how to round the parameters.

  • base_label=None (str) – overwrite the non-parameter component of the label

  • cache=None (dict) – dictionary that caries information between label calls in the same drawing

Returns

label to use in drawings

Return type

str

Example:

>>> qml.FockState(7, wires=0).label()
'|7⟩'
matrix(wire_order=None)

Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation framework as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also

compute_matrix()

Parameters

wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires

Returns

matrix representation

Return type

tensor_like

pow(z)

A list of new operators equal to this one raised to the given power.

Parameters

z (float) – exponent for the operator

Returns

list[Operator]

queue(context=<class 'pennylane.queuing.QueuingContext'>)

Append the operator to the Operator queue.

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns

A list of values \([\phi, \theta, \omega]\) such that \(RZ(\omega) RY(\theta) RZ(\phi)\) is equivalent to the original operation.

Return type

tuple[float, float, float]

sparse_matrix(wire_order=None)

Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.

Note

The wire_order argument is currently not implemented, and using it will raise an error.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

Parameters

wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires

Returns

sparse matrix representation

Return type

scipy.sparse._csr.csr_matrix

terms()

Representation of the operator as a linear combination of other operators.

\[O = \sum_i c_i O_i\]

A TermsUndefinedError is raised if no representation by terms is defined.

See also

compute_terms()

Returns

list of coefficients \(c_i\) and list of operations \(O_i\)

Return type

tuple[list[tensor_like or float], list[Operation]]

Contents

Using PennyLane

Development

API