Source code for pennylane.grouping.utils

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility functions used in Pauli partitioning and measurement reduction schemes utilizing the
symplectic vector-space representation of Pauli words. For information on the symplectic binary
representation of Pauli words and applications, see:

* `arXiv:quant-ph/9705052 <https://arxiv.org/abs/quant-ph/9705052>`_
* `arXiv:1701.08213 <https://arxiv.org/abs/1701.08213>`_
* `arXiv:1907.09386 <https://arxiv.org/abs/1907.09386>`_
"""
from functools import reduce

import pennylane as qml
from pennylane import PauliX, PauliY, PauliZ, Identity
from pennylane.operation import Observable, Tensor
from pennylane.wires import Wires
import numpy as np

# To make this quicker later on
ID_MAT = np.eye(2)


def _wire_map_from_pauli_pair(pauli_word_1, pauli_word_2):
    """Generate a wire map from the union of wires of two Paulis.

    Args:
        pauli_word_1 (.Operation): A Pauli word.
        pauli_word_2 (.Operation): A second Pauli word.

    Returns:
        dict[Union[str, int], int]): dictionary containing all wire labels used
        in the Pauli word as keys, and unique integer labels as their values.
    """
    wire_labels = Wires.all_wires([pauli_word_1.wires, pauli_word_2.wires]).labels
    wire_map = {label: i for i, label in enumerate(wire_labels)}
    return wire_map


[docs]def is_pauli_word(observable): """ Checks if an observable instance is a Pauli word. Args: observable (Observable): an observable, either a :class:`~.Tensor` instance or single-qubit observable. Returns: bool: true if the input observable is a Pauli word, false otherwise. Raises: TypeError: if input observable is not an Observable instance. **Example** >>> is_pauli_word(qml.Identity(0)) True >>> is_pauli_word(qml.PauliX(0) @ qml.PauliZ(2)) True >>> is_pauli_word(qml.PauliZ(0) @ qml.Hadamard(1)) False """ if not isinstance(observable, Observable): raise TypeError( "Expected {} instance, instead got {} instance.".format(Observable, type(observable)) ) pauli_word_names = ["Identity", "PauliX", "PauliY", "PauliZ"] if isinstance(observable, Tensor): return set(observable.name).issubset(pauli_word_names) return observable.name in pauli_word_names
[docs]def are_identical_pauli_words(pauli_1, pauli_2): """Performs a check if two Pauli words have the same ``wires`` and ``name`` attributes. This is a convenience function that checks if two given :class:`~.Tensor` instances specify the same Pauli word. This function only checks if both :class:`~.Tensor` instances have the same wires and name attributes, and hence won't perform any simplification to identify if the two Pauli words are algebraically equivalent. For instance, this function will not identify that ``PauliX(0) @ PauliX(0) = Identity(0)``, or ``PauliX(0) @ Identity(1) = PauliX(0)``, or ``Identity(0) = Identity(1)``, etc. Args: pauli_1 (Union[Identity, PauliX, PauliY, PauliZ, Tensor]): the first Pauli word pauli_2 (Union[Identity, PauliX, PauliY, PauliZ, Tensor]): the second Pauli word Returns: bool: whether ``pauli_1`` and ``pauli_2`` have the same wires and name attributes Raises: TypeError: if ``pauli_1`` or ``pauli_2`` are not :class:`~.Identity`, :class:`~.PauliX`, :class:`~.PauliY`, :class:`~.PauliZ`, or :class:`~.Tensor` instances **Example** >>> are_identical_pauli_words(qml.PauliZ(0) @ qml.PauliZ(1), qml.PauliZ(0) @ qml.PauliZ(1)) True >>> are_identical_pauli_words(qml.PauliZ(0) @ qml.PauliZ(1), qml.PauliZ(0) @ qml.PauliX(3)) False """ if not (is_pauli_word(pauli_1) and is_pauli_word(pauli_2)): raise TypeError( "Expected Pauli word observables, instead got {} and {}.".format(pauli_1, pauli_2) ) paulis_with_identity = (PauliX, PauliY, PauliZ, Identity) # convert tensors of length 1 to plain observables pauli_1 = getattr(pauli_1, "prune", lambda: pauli_1)() pauli_2 = getattr(pauli_2, "prune", lambda: pauli_2)() if isinstance(pauli_1, paulis_with_identity) and isinstance(pauli_2, paulis_with_identity): return (pauli_1.wires, pauli_1.name) == (pauli_2.wires, pauli_2.name) if isinstance(pauli_1, paulis_with_identity) and isinstance(pauli_2, Tensor): return {(pauli_1.wires, pauli_1.name)} == set(zip(pauli_2.wires, pauli_2.name)) if isinstance(pauli_1, Tensor) and isinstance(pauli_2, paulis_with_identity): return set(zip(pauli_1.wires, pauli_1.name)) == {(pauli_2.wires, pauli_2.name)} return set(zip(pauli_1.wires, pauli_1.name)) == set(zip(pauli_2.wires, pauli_2.name))
[docs]def pauli_to_binary(pauli_word, n_qubits=None, wire_map=None): """Converts a Pauli word to the binary vector representation. This functions follows convention that the first half of binary vector components specify PauliX placements while the last half specify PauliZ placements. Args: pauli_word (Union[Identity, PauliX, PauliY, PauliZ, Tensor]): the Pauli word to be converted to binary vector representation n_qubits (int): number of qubits to specify dimension of binary vector representation wire_map (dict): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: array: the ``2*n_qubits`` dimensional binary vector representation of the input Pauli word Raises: TypeError: if the input ``pauli_word`` is not an instance of Identity, PauliX, PauliY, PauliZ or tensor products thereof ValueError: if ``n_qubits`` is less than the number of wires acted on by the Pauli word **Example** If ``n_qubits`` and ``wire_map`` are both unspecified, the dimensionality of the binary vector will be ``2 * len(pauli_word.wires)``. Regardless of wire labels, the vector components encoding Pauli operations will be read from left-to-right in the tensor product when ``wire_map`` is unspecified, e.g., >>> pauli_to_binary(qml.PauliX('a') @ qml.PauliY('b') @ qml.PauliZ('c')) array([1., 1., 0., 0., 1., 1.]) >>> pauli_to_binary(qml.PauliX('c') @ qml.PauliY('a') @ qml.PauliZ('b')) array([1., 1., 0., 0., 1., 1.]) The above cases have the same binary representation since they are equivalent up to a relabelling of the wires. To keep binary vector component enumeration consistent with wire labelling across multiple Pauli words, or define any arbitrary enumeration, one can use keyword argument ``wire_map`` to set this enumeration. >>> wire_map = {'a': 0, 'b': 1, 'c': 2} >>> pauli_to_binary(qml.PauliX('a') @ qml.PauliY('b') @ qml.PauliZ('c'), wire_map=wire_map) array([1., 1., 0., 0., 1., 1.]) >>> pauli_to_binary(qml.PauliX('c') @ qml.PauliY('a') @ qml.PauliZ('b'), wire_map=wire_map) array([1., 0., 1., 1., 1., 0.]) Now the two Pauli words are distinct in the binary vector representation, as the vector components are consistently mapped from the wire labels, rather than enumerated left-to-right. If ``n_qubits`` is unspecified, the dimensionality of the vector representation will be inferred from the size of support of the Pauli word, >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(1)) array([1., 1., 0., 0.]) >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(5)) array([1., 1., 0., 0.]) Dimensionality higher than twice the support can be specified by ``n_qubits``, >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(1), n_qubits=6) array([1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(5), n_qubits=6) array([1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) For these Pauli words to have a consistent mapping to vector representation, we once again need to specify a ``wire_map``. >>> wire_map = {0:0, 1:1, 5:5} >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(1), n_qubits=6, wire_map=wire_map) array([1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(5), n_qubits=6, wire_map=wire_map) array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]) Note that if ``n_qubits`` is unspecified and ``wire_map`` is specified, the dimensionality of the vector representation will be inferred from the highest integer in ``wire_map.values()``. >>> wire_map = {0:0, 1:1, 5:5} >>> pauli_to_binary(qml.PauliX(0) @ qml.PauliX(5), wire_map=wire_map) array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]) """ if not is_pauli_word(pauli_word): raise TypeError( "Expected a Pauli word Observable instance, instead got {}.".format(pauli_word) ) if wire_map is None: num_wires = len(pauli_word.wires) wire_map = {pauli_word.wires[i]: i for i in range(num_wires)} n_qubits_min = max(wire_map.values()) + 1 if n_qubits is None: n_qubits = n_qubits_min elif n_qubits < n_qubits_min: raise ValueError( "n_qubits must support the highest mapped wire index {}," " instead got n_qubits={}.".format(n_qubits_min, n_qubits) ) pauli_wires = pauli_word.wires.map(wire_map).tolist() binary_pauli = np.zeros(2 * n_qubits) paulis_with_identity = (PauliX, PauliY, PauliZ, Identity) if isinstance(pauli_word, paulis_with_identity): operations_zip = zip(pauli_wires, [pauli_word.name]) else: operations_zip = zip(pauli_wires, pauli_word.name) for wire, name in operations_zip: if name == "PauliX": binary_pauli[wire] = 1 elif name == "PauliY": binary_pauli[wire] = 1 binary_pauli[n_qubits + wire] = 1 elif name == "PauliZ": binary_pauli[n_qubits + wire] = 1 return binary_pauli
[docs]def binary_to_pauli(binary_vector, wire_map=None): # pylint: disable=too-many-branches """Converts a binary vector of even dimension to an Observable instance. This functions follows the convention that the first half of binary vector components specify PauliX placements while the last half specify PauliZ placements. Args: binary_vector (Union[list, tuple, array]): binary vector of even dimension representing a unique Pauli word wire_map (dict): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: Tensor: The Pauli word corresponding to the input binary vector. Note that if a zero vector is input, then the resulting Pauli word will be an :class:`~.Identity` instance. Raises: TypeError: if length of binary vector is not even, or if vector does not have strictly binary components **Example** If ``wire_map`` is unspecified, the Pauli operations follow the same enumerations as the vector components, i.e., the ``i`` and ``N+i`` components specify the Pauli operation on wire ``i``, >>> binary_to_pauli([0,1,1,0,1,0]) Tensor(PauliY(wires=[1]), PauliX(wires=[2])) An arbitrary labelling can be assigned by using ``wire_map``: >>> wire_map = {Wires('a'): 0, Wires('b'): 1, Wires('c'): 2} >>> binary_to_pauli([0,1,1,0,1,0], wire_map=wire_map) Tensor(PauliY(wires=['b']), PauliX(wires=['c'])) Note that the values of ``wire_map``, if specified, must be ``0,1,..., N``, where ``N`` is the dimension of the vector divided by two, i.e., ``list(wire_map.values())`` must be ``list(range(len(binary_vector)/2))``. """ if isinstance(binary_vector, (list, tuple)): binary_vector = np.asarray(binary_vector) if len(binary_vector) % 2 != 0: raise ValueError( "Length of binary_vector must be even, instead got vector of shape {}.".format( np.shape(binary_vector) ) ) if not np.array_equal(binary_vector, binary_vector.astype(bool)): raise ValueError( "Input vector must have strictly binary components, instead got {}.".format( binary_vector ) ) n_qubits = len(binary_vector) // 2 if wire_map is not None: if set(wire_map.values()) != set(range(n_qubits)): raise ValueError( "The values of wire_map must be integers 0 to N, for 2N-dimensional binary vector." " Instead got wire_map values: {}".format(wire_map.values()) ) label_map = {explicit_index: wire_label for wire_label, explicit_index in wire_map.items()} else: label_map = {i: Wires(i) for i in range(n_qubits)} pauli_word = None for i in range(n_qubits): operation = None if binary_vector[i] == 1 and binary_vector[n_qubits + i] == 0: operation = PauliX(wires=label_map[i]) elif binary_vector[i] == 1 and binary_vector[n_qubits + i] == 1: operation = PauliY(wires=label_map[i]) elif binary_vector[i] == 0 and binary_vector[n_qubits + i] == 1: operation = PauliZ(wires=label_map[i]) if operation is not None: if pauli_word is None: pauli_word = operation else: pauli_word @= operation if pauli_word is None: return Identity(wires=list(label_map.values())[0]) return pauli_word
[docs]def pauli_word_to_string(pauli_word, wire_map=None): """Convert a Pauli word from a tensor to a string. Given a Pauli in observable form, convert it into string of characters from ``['I', 'X', 'Y', 'Z']``. This representation is required for functions such as :class:`.PauliRot`. Args: pauli_word (Observable): an observable, either a :class:`~.Tensor` instance or single-qubit observable representing a Pauli group element. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: str: The string representation of the observable in terms of ``'I'``, ``'X'``, ``'Y'``, and/or ``'Z'``. Raises: TypeError: if the input observable is not a proper Pauli word. **Example** >>> wire_map = {'a' : 0, 'b' : 1, 'c' : 2} >>> pauli_word = qml.PauliX('a') @ qml.PauliY('c') >>> pauli_word_to_string(pauli_word, wire_map=wire_map) 'XIY' """ if not is_pauli_word(pauli_word): raise TypeError(f"Expected Pauli word observables, instead got {pauli_word}") character_map = {"Identity": "I", "PauliX": "X", "PauliY": "Y", "PauliZ": "Z"} # If there is no wire map, we must infer from the structure of Paulis if wire_map is None: wire_map = {pauli_word.wires.labels[i]: i for i in range(len(pauli_word.wires))} n_qubits = len(wire_map) # Set default value of all characters to identity pauli_string = ["I"] * n_qubits # Special case is when there is a single Pauli term if not isinstance(pauli_word.name, list): if pauli_word.name != "Identity": wire_idx = wire_map[pauli_word.wires[0]] pauli_string[wire_idx] = character_map[pauli_word.name] return "".join(pauli_string) for name, wire_label in zip(pauli_word.name, pauli_word.wires): wire_idx = wire_map[wire_label] pauli_string[wire_idx] = character_map[name] return "".join(pauli_string)
[docs]def string_to_pauli_word(pauli_string, wire_map=None): """Convert a string in terms of ``'I'``, ``'X'``, ``'Y'``, and ``'Z'`` into a Pauli word for the given wire map. Args: pauli_string (str): A string of characters consisting of ``'I'``, ``'X'``, ``'Y'``, and ``'Z'`` indicating a Pauli word. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: .Observable: The Pauli word representing of ``pauli_string`` on the wires enumerated in the wire map. **Example** >>> wire_map = {'a' : 0, 'b' : 1, 'c' : 2} >>> string_to_pauli_word('XIY', wire_map=wire_map) PauliX(wires=['a']) @ PauliY(wires=['c']) """ character_map = {"I": Identity, "X": PauliX, "Y": PauliY, "Z": PauliZ} if not isinstance(pauli_string, str): raise TypeError(f"Input to string_to_pauli_word must be string, obtained {pauli_string}") # String can only consist of I, X, Y, Z if any(char not in character_map.keys() for char in pauli_string): raise ValueError( "Invalid characters encountered in string_to_pauli_word " f"string {pauli_string}. Permitted characters are 'I', 'X', 'Y', and 'Z'" ) # If no wire map is provided, construct one using integers based on the length of the string if wire_map is None: wire_map = {x: x for x in range(len(pauli_string))} if len(pauli_string) != len(wire_map): raise ValueError( "Wire map and pauli_string must have the same length to convert " "from string to Pauli word." ) # Special case: all-identity Pauli if pauli_string == "I" * len(wire_map): first_wire = list(wire_map.keys())[0] return Identity(wire_map[first_wire]) pauli_word = None for wire_name, wire_idx in wire_map.items(): pauli_char = pauli_string[wire_idx] # Don't care about the identity if pauli_char == "I": continue if pauli_word is not None: pauli_word = pauli_word @ character_map[pauli_char](wire_name) else: pauli_word = character_map[pauli_char](wire_name) return pauli_word
[docs]def pauli_word_to_matrix(pauli_word, wire_map=None): """Convert a Pauli word from a tensor to its matrix representation. The matrix representation of a Pauli word has dimension :math:`2^n \\times 2^n`, where :math:`n` is the number of qubits provided in ``wire_map``. For wires that the Pauli word does not act on, identities must be inserted into the tensor product at the correct positions. Args: pauli_word (Observable): an observable, either a :class:`~.Tensor` instance or single-qubit observable representing a Pauli group element. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: array[complex]: The matrix representation of the multi-qubit Pauli over the specified wire map. Raises: TypeError: if the input observable is not a proper Pauli word. **Example** >>> wire_map = {'a' : 0, 'b' : 1} >>> pauli_word = qml.PauliX('a') @ qml.PauliY('b') >>> pauli_word_to_matrix(pauli_word, wire_map=wire_map) array([[0.+0.j, 0.-0.j, 0.+0.j, 0.-1.j], [0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j], [0.+0.j, 0.-1.j, 0.+0.j, 0.-0.j], [0.+1.j, 0.+0.j, 0.+0.j, 0.+0.j]]) """ if not is_pauli_word(pauli_word): raise TypeError(f"Expected Pauli word observables, instead got {pauli_word}") # If there is no wire map, we must infer from the structure of Paulis if wire_map is None: wire_map = {pauli_word.wires.labels[i]: i for i in range(len(pauli_word.wires))} n_qubits = len(wire_map) # If there is only a single qubit, we can return the matrix directly if n_qubits == 1: return pauli_word.matrix # There may be more than one qubit in the Pauli but still only # one of them with anything acting on it, so take that into account pauli_names = [pauli_word.name] if isinstance(pauli_word.name, str) else pauli_word.name # Special case: the identity Pauli if pauli_names == ["Identity"]: return np.eye(2 ** n_qubits) # If there is more than one qubit, we must go through the wire map wire # by wire and pick out the relevant matrices pauli_mats = [ID_MAT for x in range(n_qubits)] for wire_label, wire_idx in wire_map.items(): if wire_label in pauli_word.wires.labels: op_idx = pauli_word.wires.labels.index(wire_label) pauli_mats[wire_idx] = getattr(qml, pauli_names[op_idx]).matrix return reduce(np.kron, pauli_mats)
[docs]def is_commuting(pauli_word_1, pauli_word_2, wire_map=None): r"""Checks if two Pauli words commute. To determine if two Pauli words commute, we can check the value of the symplectic inner product of their binary vector representations. For two binary vectors representing Pauli words, :math:`p_1 = [x_1, z_1]` and :math:`p_2 = [x_2, z_2],` the symplectic inner product is defined as :math:`\langle p_1, p_2 \rangle_{symp} = z_1 x_2^T + z_2 x_1^T`. If the symplectic product is :math:`0` they commute, while if it is :math:`1`, they don't commute. Args: pauli_word_1 (Observable): first Pauli word in commutator pauli_word_2 (Observable): second Pauli word in commutator wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values Returns: bool: returns True if the input Pauli commute, False otherwise Raises: TypeError: if either of the Pauli words is not valid. **Example** >>> wire_map = {'a' : 0, 'b' : 1, 'c' : 2} >>> pauli_word_1 = qml.PauliX('a') @ qml.PauliY('b') >>> pauli_word_2 = qml.PauliZ('a') @ qml.PauliZ('c') >>> is_commuting(pauli_word_1, pauli_word_2, wire_map=wire_map) False """ if not (is_pauli_word(pauli_word_1) and is_pauli_word(pauli_word_2)): raise TypeError( f"Expected Pauli word observables, instead got {pauli_word_1} and {pauli_word_2}" ) if wire_map is None: wire_map = _wire_map_from_pauli_pair(pauli_word_1, pauli_word_2) n_qubits = len(wire_map) pauli_vec_1 = pauli_to_binary(pauli_word_1, n_qubits=n_qubits, wire_map=wire_map) pauli_vec_2 = pauli_to_binary(pauli_word_2, n_qubits=n_qubits, wire_map=wire_map) x1, z1 = pauli_vec_1[:n_qubits], pauli_vec_1[n_qubits:] x2, z2 = pauli_vec_2[:n_qubits], pauli_vec_2[n_qubits:] return (np.dot(z1, x2) + np.dot(z2, x1)) % 2 == 0
[docs]def is_qwc(pauli_vec_1, pauli_vec_2): """Checks if two Pauli words in the binary vector representation are qubit-wise commutative. Args: pauli_vec_1 (Union[list, tuple, array]): first binary vector argument in qubit-wise commutator pauli_vec_2 (Union[list, tuple, array]): second binary vector argument in qubit-wise commutator Returns: bool: returns True if the input Pauli words are qubit-wise commutative, returns False otherwise Raises: ValueError: if the input vectors are of different dimension, if the vectors are not of even dimension, or if the vector components are not strictly binary **Example** >>> is_qwc([1,0,0,1,1,0],[1,0,1,0,1,0]) False >>> is_qwc([1,0,1,1,1,0],[1,0,0,1,1,0]) True """ if isinstance(pauli_vec_1, (list, tuple)): pauli_vec_1 = np.asarray(pauli_vec_1) if isinstance(pauli_vec_2, (list, tuple)): pauli_vec_2 = np.asarray(pauli_vec_2) if len(pauli_vec_1) != len(pauli_vec_2): raise ValueError( "Vectors a and b must be the same dimension, instead got shapes {} and {}.".format( np.shape(pauli_vec_1), np.shape(pauli_vec_2) ) ) if len(pauli_vec_1) % 2 != 0: raise ValueError( "Symplectic vector-space must have even dimension, instead got vectors of shape {}.".format( np.shape(pauli_vec_1) ) ) if not ( np.array_equal(pauli_vec_1, pauli_vec_1.astype(bool)) and np.array_equal(pauli_vec_2, pauli_vec_2.astype(bool)) ): raise ValueError( "Vectors a and b must have strictly binary components, instead got {} and {}".format( pauli_vec_1, pauli_vec_2 ) ) n_qubits = int(len(pauli_vec_1) / 2) for i in range(n_qubits): first_vec_ith_qubit_paulix = pauli_vec_1[i] first_vec_ith_qubit_pauliz = pauli_vec_1[n_qubits + i] second_vec_ith_qubit_paulix = pauli_vec_2[i] second_vec_ith_qubit_pauliz = pauli_vec_2[n_qubits + i] first_vec_qubit_i_is_identity = ( first_vec_ith_qubit_paulix == first_vec_ith_qubit_pauliz == 0 ) second_vec_qubit_i_is_identity = ( second_vec_ith_qubit_paulix == second_vec_ith_qubit_pauliz == 0 ) both_vecs_qubit_i_have_same_x = first_vec_ith_qubit_paulix == second_vec_ith_qubit_paulix both_vecs_qubit_i_have_same_z = first_vec_ith_qubit_pauliz == second_vec_ith_qubit_pauliz if not ( ((first_vec_qubit_i_is_identity) or (second_vec_qubit_i_is_identity)) or ((both_vecs_qubit_i_have_same_x) and (both_vecs_qubit_i_have_same_z)) ): return False return True
[docs]def observables_to_binary_matrix(observables, n_qubits=None, wire_map=None): """Converts a list of Pauli words to the binary vector representation and yields a row matrix of the binary vectors. The dimension of the binary vectors will be implied from the highest wire being acted on non-trivially by the Pauli words in observables. Args: observables (list[Union[Identity, PauliX, PauliY, PauliZ, Tensor]]): the list of Pauli words n_qubits (int): number of qubits to specify dimension of binary vector representation wire_map (dict): dictionary containing all wire labels used in the Pauli words as keys, and unique integer labels as their values Returns: array[array[int]]: a matrix whose rows are Pauli words in binary vector representation **Example** >>> observables_to_binary_matrix([PauliX(0) @ PauliY(2), PauliZ(0) @ PauliZ(1) @ PauliZ(2)]) array([[1., 1., 0., 0., 1., 0.], [0., 0., 0., 1., 1., 1.]]) """ m_cols = len(observables) if wire_map is None: all_wires = Wires.all_wires([pauli_word.wires for pauli_word in observables]) wire_map = {i: c for c, i in enumerate(all_wires)} n_qubits_min = max(wire_map.values()) + 1 if n_qubits is None: n_qubits = n_qubits_min elif n_qubits < n_qubits_min: raise ValueError( "n_qubits must support the highest mapped wire index {}," " instead got n_qubits={}.".format(n_qubits_min, n_qubits) ) binary_mat = np.zeros((m_cols, 2 * n_qubits)) for i in range(m_cols): binary_mat[i, :] = pauli_to_binary(observables[i], n_qubits=n_qubits, wire_map=wire_map) return binary_mat
[docs]def qwc_complement_adj_matrix(binary_observables): """Obtains the adjacency matrix for the complementary graph of the qubit-wise commutativity graph for a given set of observables in the binary representation. The qubit-wise commutativity graph for a set of Pauli words has a vertex for each Pauli word, and two nodes are connected if and only if the corresponding Pauli words are qubit-wise commuting. Args: binary_observables (array[array[int]]): a matrix whose rows are the Pauli words in the binary vector representation Returns: array[array[int]]: the adjacency matrix for the complement of the qubit-wise commutativity graph Raises: ValueError: if input binary observables contain components which are not strictly binary **Example** >>> binary_observables array([[1., 0., 1., 0., 0., 1.], [0., 1., 1., 1., 0., 1.], [0., 0., 0., 1., 0., 0.]]) >>> qwc_complement_adj_matrix(binary_observables) array([[0., 1., 1.], [1., 0., 0.], [1., 0., 0.]]) """ if isinstance(binary_observables, (list, tuple)): binary_observables = np.asarray(binary_observables) if not np.array_equal(binary_observables, binary_observables.astype(bool)): raise ValueError("Expected a binary array, instead got {}".format(binary_observables)) m_terms = np.shape(binary_observables)[0] adj = np.zeros((m_terms, m_terms)) for i in range(m_terms): for j in range(i + 1, m_terms): adj[i, j] = int(not is_qwc(binary_observables[i], binary_observables[j])) adj[j, i] = adj[i, j] return adj