Source code for pennylane.math.utils

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility functions"""
import warnings

import autoray as ar
import numpy as _np

# pylint: disable=import-outside-toplevel
from autograd.numpy.numpy_boxes import ArrayBox
from autoray import numpy as np

from . import single_dispatch  # pylint:disable=unused-import


[docs]def allequal(tensor1, tensor2, **kwargs): """Returns True if two tensors are element-wise equal along a given axis. This function is equivalent to calling ``np.all(tensor1 == tensor2, **kwargs)``, but allows for ``tensor1`` and ``tensor2`` to differ in type. Args: tensor1 (tensor_like): tensor to compare tensor2 (tensor_like): tensor to compare **kwargs: Accepts any keyword argument that is accepted by ``np.all``, such as ``axis``, ``out``, and ``keepdims``. See the `NumPy documentation <https://numpy.org/doc/stable/reference/generated/numpy.all.html>`__ for more details. Returns: ndarray, bool: If ``axis=None``, a logical AND reduction is applied to all elements and a boolean will be returned, indicating if all elements evaluate to ``True``. Otherwise, a boolean NumPy array will be returned. **Example** >>> a = torch.tensor([1, 2]) >>> b = np.array([1, 2]) >>> allequal(a, b) True """ t1 = ar.to_numpy(tensor1) t2 = ar.to_numpy(tensor2) return np.all(t1 == t2, **kwargs)
[docs]def allclose(a, b, rtol=1e-05, atol=1e-08, **kwargs): """Wrapper around np.allclose, allowing tensors ``a`` and ``b`` to differ in type""" try: # Some frameworks may provide their own allclose implementation. # Try and use it if available. res = np.allclose(a, b, rtol=rtol, atol=atol, **kwargs) except (TypeError, AttributeError, ImportError, RuntimeError): # Otherwise, convert the input to NumPy arrays. # # TODO: replace this with a bespoke, framework agnostic # low-level implementation to avoid the NumPy conversion: # # np.abs(a - b) <= atol + rtol * np.abs(b) # t1 = ar.to_numpy(a) t2 = ar.to_numpy(b) res = np.allclose(t1, t2, rtol=rtol, atol=atol, **kwargs) return res
allclose.__doc__ = _np.allclose.__doc__
[docs]def cast(tensor, dtype): """Casts the given tensor to a new type. Args: tensor (tensor_like): tensor to cast dtype (str, np.dtype): Any supported NumPy dtype representation; this can be a string (``"float64"``), a ``np.dtype`` object (``np.dtype("float64")``), or a dtype class (``np.float64``). If ``tensor`` is not a NumPy array, the **equivalent** dtype in the dispatched framework is used. Returns: tensor_like: a tensor with the same shape and values as ``tensor`` and the same dtype as ``dtype`` **Example** We can use NumPy dtype specifiers: >>> x = torch.tensor([1, 2]) >>> cast(x, np.float64) tensor([1., 2.], dtype=torch.float64) We can also use strings: >>> x = tf.Variable([1, 2]) >>> cast(x, "complex128") <tf.Tensor: shape=(2,), dtype=complex128, numpy=array([1.+0.j, 2.+0.j])> """ if isinstance(tensor, (list, tuple, int, float, complex)): tensor = np.asarray(tensor) if not isinstance(dtype, str): try: dtype = np.dtype(dtype).name except (AttributeError, TypeError, ImportError): dtype = getattr(dtype, "name", dtype) return ar.astype(tensor, ar.to_backend_dtype(dtype, like=ar.infer_backend(tensor)))
[docs]def cast_like(tensor1, tensor2): """Casts a tensor to the same dtype as another. Args: tensor1 (tensor_like): tensor to cast tensor2 (tensor_like): tensor with corresponding dtype to cast to Returns: tensor_like: a tensor with the same shape and values as ``tensor1`` and the same dtype as ``tensor2`` **Example** >>> x = torch.tensor([1, 2]) >>> y = torch.tensor([3., 4.]) >>> cast_like(x, y) tensor([1., 2.]) """ if isinstance(tensor2, tuple) and len(tensor2) > 0: tensor2 = tensor2[0] if isinstance(tensor2, ArrayBox): dtype = ar.to_numpy(tensor2._value).dtype.type # pylint: disable=protected-access elif not is_abstract(tensor2): dtype = ar.to_numpy(tensor2).dtype.type else: dtype = tensor2.dtype return cast(tensor1, dtype)
[docs]def convert_like(tensor1, tensor2): """Convert a tensor to the same type as another. Args: tensor1 (tensor_like): tensor to convert tensor2 (tensor_like): tensor with corresponding type to convert to Returns: tensor_like: a tensor with the same shape, values, and dtype as ``tensor1`` and the same type as ``tensor2``. **Example** >>> x = np.array([1, 2]) >>> y = tf.Variable([3, 4]) >>> convert_like(x, y) <tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 2])> """ interface = get_interface(tensor2) if interface == "torch": dev = tensor2.device return np.asarray(tensor1, device=dev, like=interface) return np.asarray(tensor1, like=interface)
[docs]def get_interface(*values): """Determines the correct framework to dispatch to given a tensor-like object or a sequence of tensor-like objects. Args: *values (tensor_like): variable length argument list with single tensor-like objects Returns: str: the name of the interface To determine the framework to dispatch to, the following rules are applied: * Tensors that are incompatible (such as Torch, TensorFlow and Jax tensors) cannot both be present. * Autograd tensors *may* be present alongside Torch, TensorFlow and Jax tensors, but Torch, TensorFlow and Jax take precendence; the autograd arrays will be treated as non-differentiable NumPy arrays. A warning will be raised suggesting that vanilla NumPy be used instead. * Vanilla NumPy arrays and SciPy sparse matrices can be used alongside other tensor objects; they will always be treated as non-differentiable constants. .. warning:: ``get_interface`` defaults to ``"numpy"`` whenever Python built-in objects are passed. I.e. a list or tuple of ``torch`` tensors will be identified as ``"numpy"``: >>> get_interface([torch.tensor([1]), torch.tensor([1])]) "numpy" The correct usage in that case is to unpack the arguments ``get_interface(*[torch.tensor([1]), torch.tensor([1])])``. """ if len(values) == 1: return _get_interface_of_single_tensor(values[0]) interfaces = {_get_interface_of_single_tensor(v) for v in values} if len(interfaces - {"numpy", "scipy", "autograd"}) > 1: # contains multiple non-autograd interfaces raise ValueError("Tensors contain mixed types; cannot determine dispatch library") non_numpy_scipy_interfaces = set(interfaces) - {"numpy", "scipy"} if len(non_numpy_scipy_interfaces) > 1: # contains autograd and another interface warnings.warn( f"Contains tensors of types {non_numpy_scipy_interfaces}; dispatch will prioritize " "TensorFlow, PyTorch, and Jax over Autograd. Consider replacing Autograd with vanilla NumPy.", UserWarning, ) if "tensorflow" in interfaces: return "tensorflow" if "torch" in interfaces: return "torch" if "jax" in interfaces: return "jax" if "autograd" in interfaces: return "autograd" return "numpy"
def _get_interface_of_single_tensor(tensor): """Returns the name of the package that any array/tensor manipulations will dispatch to. The returned strings correspond to those used for PennyLane :doc:`interfaces </introduction/interfaces>`. Args: tensor (tensor_like): tensor input Returns: str: name of the interface **Example** >>> x = torch.tensor([1., 2.]) >>> get_interface(x) 'torch' >>> from pennylane import numpy as np >>> x = np.array([4, 5], requires_grad=True) >>> get_interface(x) 'autograd' """ namespace = tensor.__class__.__module__.split(".")[0] if namespace in ("pennylane", "autograd"): return "autograd" res = ar.infer_backend(tensor) if res == "builtins": return "numpy" return res
[docs]def get_deep_interface(value): """ Given a deep data structure with interface-specific scalars at the bottom, return their interface name. Args: value (list, tuple): A deep list-of-lists, tuple-of-tuples, or combination with interface-specific data hidden within it Returns: str: The name of the interface deep within the value **Example** >>> x = [[jax.numpy.array(1), jax.numpy.array(2)], [jax.numpy.array(3), jax.numpy.array(4)]] >>> get_deep_interface(x) 'jax' This can be especially useful when converting to the appropriate interface: >>> qml.math.asarray(x, like=qml.math.get_deep_interface(x)) Array([[1, 2], [3, 4]], dtype=int64) """ itr = value while isinstance(itr, (list, tuple)): if len(itr) == 0: return "builtins" itr = itr[0] return ar.infer_backend(itr)
[docs]def is_abstract(tensor, like=None): """Returns True if the tensor is considered abstract. Abstract arrays have no internal value, and are used primarily when tracing Python functions, for example, in order to perform just-in-time (JIT) compilation. Abstract tensors most commonly occur within a function that has been decorated using ``@tf.function`` or ``@jax.jit``. .. note:: Currently Autograd tensors and Torch tensors will always return ``False``. This is because: - Autograd does not provide JIT compilation, and - ``@torch.jit.script`` is not currently compatible with QNodes. Args: tensor (tensor_like): input tensor like (str): The name of the interface. Will be determined automatically if not provided. Returns: bool: whether the tensor is abstract or not **Example** Consider the following JAX function: .. code-block:: python import jax from jax import numpy as jnp def function(x): print("Value:", x) print("Abstract:", qml.math.is_abstract(x)) return jnp.sum(x ** 2) When we execute it, we see that the tensor is not abstract; it has known value: >>> x = jnp.array([0.5, 0.1]) >>> function(x) Value: [0.5, 0.1] Abstract: False Array(0.26, dtype=float32) However, if we use the ``@jax.jit`` decorator, the tensor will now be abstract: >>> x = jnp.array([0.5, 0.1]) >>> jax.jit(function)(x) Value: Traced<ShapedArray(float32[2])>with<DynamicJaxprTrace(level=0/1)> Abstract: True Array(0.26, dtype=float32) Note that JAX uses an abstract *shaped* array, so although we won't be able to include conditionals within our function that depend on the value of the tensor, we *can* include conditionals that depend on the shape of the tensor. Similarly, consider the following TensorFlow function: .. code-block:: python import tensorflow as tf def function(x): print("Value:", x) print("Abstract:", qml.math.is_abstract(x)) return tf.reduce_sum(x ** 2) >>> x = tf.Variable([0.5, 0.1]) >>> function(x) Value: <tf.Variable 'Variable:0' shape=(2,) dtype=float32, numpy=array([0.5, 0.1], dtype=float32)> Abstract: False <tf.Tensor: shape=(), dtype=float32, numpy=0.26> If we apply the ``@tf.function`` decorator, the tensor will now be abstract: >>> tf.function(function)(x) Value: <tf.Variable 'Variable:0' shape=(2,) dtype=float32> Abstract: True <tf.Tensor: shape=(), dtype=float32, numpy=0.26> """ interface = like or get_interface(tensor) if interface == "jax": import jax from jax.interpreters.partial_eval import DynamicJaxprTracer if isinstance( tensor, ( jax.interpreters.ad.JVPTracer, jax.interpreters.batching.BatchTracer, jax.interpreters.partial_eval.JaxprTracer, ), ): # Tracer objects will be used when computing gradients or applying transforms. # If the value of the tracer is known, it will contain a ConcreteArray. # Otherwise, it will be abstract. return not isinstance(tensor.aval, jax.core.ConcreteArray) return isinstance(tensor, DynamicJaxprTracer) if interface == "tensorflow": import tensorflow as tf from tensorflow.python.framework.ops import EagerTensor return not isinstance(tf.convert_to_tensor(tensor), EagerTensor) # Autograd does not have a JIT # QNodes do not currently support TorchScript: # NotSupportedError: Compiled functions can't take variable number of arguments or # use keyword-only arguments with defaults. return False
def import_should_record_backprop(): # pragma: no cover """Return should_record_backprop or an equivalent function from TensorFlow.""" import tensorflow.python as tfpy if hasattr(tfpy.eager.tape, "should_record_backprop"): from tensorflow.python.eager.tape import should_record_backprop elif hasattr(tfpy.eager.tape, "should_record"): from tensorflow.python.eager.tape import should_record as should_record_backprop elif hasattr(tfpy.eager.record, "should_record_backprop"): from tensorflow.python.eager.record import should_record_backprop else: raise ImportError("Cannot import should_record_backprop from TensorFlow.") return should_record_backprop
[docs]def requires_grad(tensor, interface=None): """Returns True if the tensor is considered trainable. .. warning:: The implementation depends on the contained tensor type, and may be context dependent. For example, Torch tensors and PennyLane tensors track trainability as a property of the tensor itself. TensorFlow, on the other hand, only tracks trainability if being watched by a gradient tape. Args: tensor (tensor_like): input tensor interface (str): The name of the interface. Will be determined automatically if not provided. **Example** Calling this function on a PennyLane NumPy array: >>> x = np.array([1., 5.], requires_grad=True) >>> requires_grad(x) True >>> x.requires_grad = False >>> requires_grad(x) False PyTorch has similar behaviour. With TensorFlow, the output is dependent on whether the tensor is currently being watched by a gradient tape: >>> x = tf.Variable([0.6, 0.1]) >>> requires_grad(x) False >>> with tf.GradientTape() as tape: ... print(requires_grad(x)) True While TensorFlow constants are by default not trainable, they can be manually watched by the gradient tape: >>> x = tf.constant([0.6, 0.1]) >>> with tf.GradientTape() as tape: ... print(requires_grad(x)) False >>> with tf.GradientTape() as tape: ... tape.watch([x]) ... print(requires_grad(x)) True """ interface = interface or get_interface(tensor) if interface == "tensorflow": import tensorflow as tf should_record_backprop = import_should_record_backprop() return should_record_backprop([tf.convert_to_tensor(tensor)]) if interface == "autograd": if isinstance(tensor, ArrayBox): return True return getattr(tensor, "requires_grad", False) if interface == "torch": return getattr(tensor, "requires_grad", False) if interface in {"numpy", "scipy"}: return False if interface == "jax": import jax return isinstance(tensor, jax.core.Tracer) raise ValueError(f"Argument {tensor} is an unknown object")
[docs]def in_backprop(tensor, interface=None): """Returns True if the tensor is considered to be in a backpropagation environment, it works for Autograd, TensorFlow and Jax. It is not only checking the differentiability of the tensor like :func:`~.requires_grad`, but rather checking if the gradient is actually calculated. Args: tensor (tensor_like): input tensor interface (str): The name of the interface. Will be determined automatically if not provided. **Example** >>> x = tf.Variable([0.6, 0.1]) >>> requires_grad(x) False >>> with tf.GradientTape() as tape: ... print(requires_grad(x)) True .. seealso:: :func:`~.requires_grad` """ interface = interface or get_interface(tensor) if interface == "tensorflow": import tensorflow as tf should_record_backprop = import_should_record_backprop() return should_record_backprop([tf.convert_to_tensor(tensor)]) if interface == "autograd": return isinstance(tensor, ArrayBox) if interface == "jax": import jax return isinstance(tensor, jax.core.Tracer) if interface in {"numpy", "scipy"}: return False raise ValueError(f"Cannot determine if {tensor} is in backpropagation.")