Source code for pennylane.optimize.adam

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Adam optimizer"""
from numpy import sqrt
from .gradient_descent import GradientDescentOptimizer


[docs]class AdamOptimizer(GradientDescentOptimizer): r"""Gradient-descent optimizer with adaptive learning rate, first and second moment. Adaptive Moment Estimation uses a step-dependent learning rate, a first moment :math:`a` and a second moment :math:`b`, reminiscent of the momentum and velocity of a particle: .. math:: x^{(t+1)} = x^{(t)} - \eta^{(t+1)} \frac{a^{(t+1)}}{\sqrt{b^{(t+1)}} + \epsilon }, where the update rules for the two moments are given by .. math:: a^{(t+1)} &= \beta_1 a^{(t)} + (1-\beta_1) \nabla f(x^{(t)}),\\ b^{(t+1)} &= \beta_2 b^{(t)} + (1-\beta_2) (\nabla f(x^{(t)}))^{\odot 2},\\ \eta^{(t+1)} &= \eta \frac{\sqrt{(1-\beta_2^{t+1})}}{(1-\beta_1^{t+1})}. Above, :math:`( \nabla f(x^{(t-1)}))^{\odot 2}` denotes the element-wise square operation, which means that each element in the gradient is multiplied by itself. The hyperparameters :math:`\beta_1` and :math:`\beta_2` can also be step-dependent. Initially, the first and second moment are zero. The shift :math:`\epsilon` avoids division by zero. For more details, see `arXiv:1412.6980 <https://arxiv.org/abs/1412.6980>`_. Args: stepsize (float): the user-defined hyperparameter :math:`\eta` beta1 (float): hyperparameter governing the update of the first and second moment beta2 (float): hyperparameter governing the update of the first and second moment eps (float): offset :math:`\epsilon` added for numerical stability .. note:: When using ``torch``, ``tensorflow`` or ``jax`` interfaces, refer to :doc:`Gradients and training </introduction/interfaces>` for suitable optimizers. """ def __init__(self, stepsize=0.01, beta1=0.9, beta2=0.99, eps=1e-8): super().__init__(stepsize) self.beta1 = beta1 self.beta2 = beta2 self.eps = eps self.accumulation = None
[docs] def apply_grad(self, grad, args): r"""Update the variables args to take a single optimization step. Flattens and unflattens the inputs to maintain nested iterables as the parameters of the optimization. Args: grad (tuple[ndarray]): the gradient of the objective function at point :math:`x^{(t)}`: :math:`\nabla f(x^{(t)})` args (tuple): the current value of the variables :math:`x^{(t)}` Returns: list: the new values :math:`x^{(t+1)}` """ args_new = list(args) if self.accumulation is None: self.accumulation = {"fm": [0] * len(args), "sm": [0] * len(args), "t": 0} self.accumulation["t"] += 1 # Update step size (instead of correcting for bias) new_stepsize = ( self.stepsize * sqrt(1 - self.beta2 ** self.accumulation["t"]) / (1 - self.beta1 ** self.accumulation["t"]) ) trained_index = 0 for index, arg in enumerate(args): if getattr(arg, "requires_grad", False): self._update_accumulation(index, grad[trained_index]) args_new[index] = arg - new_stepsize * self.accumulation["fm"][index] / ( sqrt(self.accumulation["sm"][index]) + self.eps ) trained_index += 1 return args_new
def _update_accumulation(self, index, grad): r"""Update the moments. Args: index (int): the index of the argument to update grad (ndarray): the gradient for that trainable param """ # update first moment self.accumulation["fm"][index] = ( self.beta1 * self.accumulation["fm"][index] + (1 - self.beta1) * grad ) # update second moment self.accumulation["sm"][index] = ( self.beta2 * self.accumulation["sm"][index] + (1 - self.beta2) * grad**2 )
[docs] def reset(self): """Reset optimizer by erasing memory of past steps.""" self.accumulation = None
@property def fm(self): """Returns estimated first moments of gradient""" return None if self.accumulation is None else self.accumulation["fm"] @property def sm(self): """Returns estimated second moments of gradient""" return None if self.accumulation is None else self.accumulation["sm"] @property def t(self): """Returns accumulated timesteps""" return None if self.accumulation is None else self.accumulation["t"]