Source code for pennylane.optimize.qng

# Copyright 2018-2020 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Quantum natural gradient optimizer"""
# pylint: disable=too-many-branches

import numpy as np

from pennylane.utils import _flatten, unflatten
from .gradient_descent import GradientDescentOptimizer


[docs]class QNGOptimizer(GradientDescentOptimizer): r"""Optimizer with adaptive learning rate, via calculation of the diagonal or block-diagonal approximation to the Fubini-Study metric tensor. A quantum generalization of natural gradient descent. The QNG optimizer uses a step- and parameter-dependent learning rate, with the learning rate dependent on the pseudo-inverse of the Fubini-Study metric tensor :math:`g`: .. math:: x^{(t+1)} = x^{(t)} - \eta g(f(x^{(t)}))^{-1} \nabla f(x^{(t)}), where :math:`f(x^{(t)}) = \langle 0 | U(x^{(t)})^\dagger \hat{B} U(x^{(t)}) | 0 \rangle` is an expectation value of some observable measured on the variational quantum circuit :math:`U(x^{(t)})`. Consider a quantum node represented by the variational quantum circuit .. math:: U(\mathbf{\theta}) = W(\theta_{i+1}, \dots, \theta_{N})X(\theta_{i}) V(\theta_1, \dots, \theta_{i-1}), where all parametrized gates can be written of the form :math:`X(\theta_{i}) = e^{i\theta_i K_i}`. That is, the gate :math:`K_i` is the *generator* of the parametrized operation :math:`X(\theta_i)` corresponding to the :math:`i`-th parameter. For each parametric layer :math:`\ell` in the variational quantum circuit containing :math:`n` parameters, the :math:`n\times n` block-diagonal submatrix of the Fubini-Study tensor :math:`g_{ij}^{(\ell)}` is calculated directly on the quantum device in a single evaluation: .. math:: g_{ij}^{(\ell)} = \langle \psi_\ell | K_i K_j | \psi_\ell \rangle - \langle \psi_\ell | K_i | \psi_\ell\rangle \langle \psi_\ell |K_j | \psi_\ell\rangle where :math:`|\psi_\ell\rangle = V(\theta_1, \dots, \theta_{i-1})|0\rangle` (that is, :math:`|\psi_\ell\rangle` is the quantum state prior to the application of parameterized layer :math:`\ell`). Combining the quantum natural gradient optimizer with the analytic parameter-shift rule to optimize a variational circuit with :math:`d` parameters and :math:`L` layers, a total of :math:`2d+L` quantum evaluations are required per optimization step. For more details, see: James Stokes, Josh Izaac, Nathan Killoran, Giuseppe Carleo. "Quantum Natural Gradient." `arXiv:1909.02108 <https://arxiv.org/abs/1909.02108>`_, 2019. .. note:: The QNG optimizer supports single QNodes or :class:`~.ExpvalCost` objects as objective functions. Alternatively, the metric tensor can directly be provided to the :func:`step` method of the optimizer, using the ``metric_tensor_fn`` argument. For the following cases, providing metric_tensor_fn may be useful: * For hybrid classical-quantum models, the "mixed geometry" of the model makes it unclear which metric should be used for which parameter. For example, parameters of quantum nodes are better suited to one metric (such as the QNG), whereas others (e.g., parameters of classical nodes) are likely better suited to another metric. * For multi-QNode models, we don't know what geometry is appropriate if a parameter is shared amongst several QNodes. If the objective function is VQE/VQE-like, i.e., a function of a group of QNodes that share an ansatz, there are two ways to use the optimizer: * Realize the objective function as an :class:`~.ExpvalCost` object, which has a ``metric_tensor`` method. * Manually provide the ``metric_tensor_fn`` corresponding to the metric tensor of of the QNode(s) involved in the objective function. **Examples:** For VQE/VQE-like problems, the objective function for the optimizer can be realized as an ExpvalCost object. >>> dev = qml.device("default.qubit", wires=1) >>> def circuit(params, wires=0): ... qml.RX(params[0], wires=wires) ... qml.RY(params[1], wires=wires) >>> coeffs = [1, 1] >>> obs = [qml.PauliX(0), qml.PauliZ(0)] >>> H = qml.Hamiltonian(coeffs, obs) >>> cost_fn = qml.ExpvalCost(circuit, H, dev) Once constructed, the cost function can be passed directly to the optimizer's ``step`` function: >>> eta = 0.01 >>> init_params = [0.011, 0.012] >>> opt = qml.QNGOptimizer(eta) >>> theta_new = opt.step(cost_fn, init_params) >>> print(theta_new) [0.011445239214543481, -0.027519522461477233] Alternatively, the same objective function can be used for the optimizer by manually providing the ``metric_tensor_fn``. >>> qnodes = qml.map(circuit, obs, dev, 'expval') >>> cost_fn = qml.dot(coeffs, qnodes) >>> eta = 0.01 >>> init_params = [0.011, 0.012] >>> opt = qml.QNGOptimizer(eta) >>> theta_new = opt.step(cost_fn, init_params, metric_tensor_fn=qnodes.qnodes[0].metric_tensor) >>> print(theta_new) [0.011445239214543481, -0.027519522461477233] .. seealso:: See the :ref:`quantum natural gradient example <quantum_natural_gradient>` for more details on Fubini-Study metric tensor and this optimization class. Args: stepsize (float): the user-defined hyperparameter :math:`\eta` diag_approx (bool): If ``True``, forces a diagonal approximation where the calculated metric tensor only contains diagonal elements :math:`G_{ii}`. In some cases, this may reduce the time taken per optimization step. lam (float): metric tensor regularization :math:`G_{ij}+\lambda I` to be applied at each optimization step """ def __init__(self, stepsize=0.01, diag_approx=False, lam=0): super().__init__(stepsize) self.diag_approx = diag_approx self.metric_tensor = None self.lam = lam
[docs] def step_and_cost(self, qnode, x, recompute_tensor=True, metric_tensor_fn=None): """Update x with one step of the optimizer and return the corresponding objective function value prior to the step. Args: qnode (QNode): the QNode for optimization x (array): NumPy array containing the current values of the variables to be updated recompute_tensor (bool): Whether or not the metric tensor should be recomputed. If not, the metric tensor from the previous optimization step is used. metric_tensor_fn (function): Optional metric tensor function with respect to the variables ``x``. If ``None``, the metric tensor function is computed automatically. Returns: tuple: the new variable values :math:`x^{(t+1)}` and the objective function output prior to the step """ # pylint: disable=arguments-differ if not hasattr(qnode, "metric_tensor") and not metric_tensor_fn: raise ValueError( "The objective function must either be encoded as a single QNode or " "an ExpvalCost object for the natural gradient to be automatically computed. " "Otherwise, metric_tensor_fn must be explicitly provided to the optimizer." ) if recompute_tensor or self.metric_tensor is None: if not metric_tensor_fn: # pseudo-inverse metric tensor self.metric_tensor = qnode.metric_tensor([x], diag_approx=self.diag_approx) else: self.metric_tensor = metric_tensor_fn([x], diag_approx=self.diag_approx) self.metric_tensor += self.lam * np.identity(self.metric_tensor.shape[0]) # The QNGOptimizer.step does not permit passing an external gradient function. # Autograd will always calculate the gradient and `forward` will never be `None`. g, forward = self.compute_grad(qnode, x) x_out = self.apply_grad(g, x) return x_out, forward
# pylint: disable=arguments-differ
[docs] def step(self, qnode, x, recompute_tensor=True, metric_tensor_fn=None): """Update x with one step of the optimizer. Args: qnode (QNode): the QNode for optimization x (array): NumPy array containing the current values of the variables to be updated recompute_tensor (bool): Whether or not the metric tensor should be recomputed. If not, the metric tensor from the previous optimization step is used. metric_tensor_fn (function): Optional metric tensor function with respect to the variables ``x``. If ``None``, the metric tensor function is computed automatically. Returns: array: the new variable values :math:`x^{(t+1)}` """ x_out, _ = self.step_and_cost( qnode, x, recompute_tensor=recompute_tensor, metric_tensor_fn=metric_tensor_fn ) return x_out
[docs] def apply_grad(self, grad, x): r"""Update the variables x to take a single optimization step. Flattens and unflattens the inputs to maintain nested iterables as the parameters of the optimization. Args: grad (array): The gradient of the objective function at point :math:`x^{(t)}`: :math:`\nabla f(x^{(t)})` x (array): the current value of the variables :math:`x^{(t)}` Returns: array: the new values :math:`x^{(t+1)}` """ grad_flat = np.array(list(_flatten(grad))) x_flat = np.array(list(_flatten(x))) x_new_flat = x_flat - self._stepsize * np.linalg.solve(self.metric_tensor, grad_flat) return unflatten(x_new_flat, x)