qml.templates.subroutines.QuantumPhaseEstimation¶

class
QuantumPhaseEstimation
(unitary, target_wires, estimation_wires, do_queue=True)[source]¶ Bases:
pennylane.operation.Operation
Performs the quantum phase estimation circuit.
Given a unitary matrix \(U\), this template applies the circuit for quantum phase estimation. The unitary is applied to the qubits specified by
target_wires
and \(n\) qubits are used for phase estimation as specified byestimation_wires
.This circuit can be used to perform the standard quantum phase estimation algorithm, consisting of the following steps:
Prepare
target_wires
in a given state. Iftarget_wires
are prepared in an eigenstate of \(U\) that has corresponding eigenvalue \(e^{2 \pi i \theta}\) with phase \(\theta \in [0, 1)\), this algorithm will measure \(\theta\). Other input states can be prepared more generally.Apply the
QuantumPhaseEstimation
circuit.Measure
estimation_wires
usingprobs()
, giving a probability distribution over measurement outcomes in the computational basis.Find the index of the largest value in the probability distribution and divide that number by \(2^{n}\). This number will be an estimate of \(\theta\) with an error that decreases exponentially with the number of qubits \(n\).
Note that if \(\theta \in (1, 0]\), we can estimate the phase by again finding the index \(i\) found in step 4 and calculating \(\theta \approx \frac{1  i}{2^{n}}\). The usage details below give an example of this case.
 Parameters
 Raises
QuantumFunctionError – if the
target_wires
andestimation_wires
share a common element
Usage Details
Consider the matrix corresponding to a rotation from an
RX
gate:import pennylane as qml from pennylane.templates import QuantumPhaseEstimation from pennylane import numpy as np phase = 5 target_wires = [0] unitary = qml.RX(phase, wires=0).matrix
The
phase
parameter can be estimated usingQuantumPhaseEstimation
. An example is shown below using a register of five phaseestimation qubits:n_estimation_wires = 5 estimation_wires = range(1, n_estimation_wires + 1) dev = qml.device("default.qubit", wires=n_estimation_wires + 1) @qml.qnode(dev) def circuit(): # Start in the +> eigenstate of the unitary qml.Hadamard(wires=target_wires) QuantumPhaseEstimation( unitary, target_wires=target_wires, estimation_wires=estimation_wires, ) return qml.probs(estimation_wires) phase_estimated = np.argmax(circuit()) / 2 ** n_estimation_wires # Need to rescale phase due to convention of RX gate phase_estimated = 4 * np.pi * (1  phase_estimated)
Attributes
Get base name of the operator.
Eigenvalues of an instantiated operator.
Generator of the operation.
Gradient computation method.
Gradient recipe for the parametershift method.
Boolean determining if the inverse of the operation was requested.
Matrix representation of an instantiated operator in the computational basis.
Get and set the name of the operator.
Current parameter values.
Wires of this operator.

base_name
¶ Get base name of the operator.

eigvals
¶

generator
¶ Generator of the operation.
A length2 list
[generator, scaling_factor]
, wheregenerator
is an existing PennyLane operation class or \(2\times 2\) Hermitian array that acts as the generator of the current operationscaling_factor
represents a scaling factor applied to the generator operation
For example, if \(U(\theta)=e^{i0.7\theta \sigma_x}\), then \(\sigma_x\), with scaling factor \(s\), is the generator of operator \(U(\theta)\):
generator = [PauliX, 0.7]
Default is
[None, 1]
, indicating the operation has no generator.

grad_method
¶ Gradient computation method.
'A'
: analytic differentiation using the parametershift method.'F'
: finite difference numerical differentiation.None
: the operation may not be differentiated.
Default is
'F'
, orNone
if the Operation has zero parameters.

grad_recipe
= None¶ Gradient recipe for the parametershift method.
This is a tuple with one nested list per operation parameter. For parameter \(\phi_k\), the nested list contains elements of the form \([c_i, a_i, s_i]\) where \(i\) is the index of the term, resulting in a gradient recipe of
\[\frac{\partial}{\partial\phi_k}f = \sum_{i} c_i f(a_i \phi_k + s_i).\]If
None
, the default gradient recipe containing the two terms \([c_0, a_0, s_0]=[1/2, 1, \pi/2]\) and \([c_1, a_1, s_1]=[1/2, 1, \pi/2]\) is assumed for every parameter. Type
tuple(Union(list[list[float]], None)) or None

inverse
¶ Boolean determining if the inverse of the operation was requested.

matrix
¶

name
¶ Get and set the name of the operator.

num_params
= 1¶

num_wires
= 1¶

par_domain
= 'A'¶

parameters
¶ Current parameter values.

string_for_inverse
= '.inv'¶
Methods
adjoint
([do_queue])Create an operation that is the adjoint of this one.
decomposition
(*params, wires)Returns a template decomposing the operation into other quantum operations.
expand
()Returns a tape containing the decomposed operations, rather than a list.
get_parameter_shift
(idx[, shift])Multiplier and shift for the given parameter, based on its gradient recipe.
inv
()Inverts the operation, such that the inverse will be used for the computations by the specific device.
queue
()Append the operator to the Operator queue.

adjoint
(do_queue=False)¶ Create an operation that is the adjoint of this one.
Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops are equivalent to the inverted operation for unitary gates.
 Parameters
do_queue – Whether to add the adjointed gate to the context queue.
 Returns
The adjointed operation.

static
decomposition
(*params, wires)¶ Returns a template decomposing the operation into other quantum operations.

expand
()[source]¶ Returns a tape containing the decomposed operations, rather than a list.
 Returns
Returns a quantum tape that contains the operations decomposition, or if not implemented, simply the operation itself.
 Return type

get_parameter_shift
(idx, shift=1.5707963267948966)¶ Multiplier and shift for the given parameter, based on its gradient recipe.
 Parameters
idx (int) – parameter index
 Returns
multiplier, shift
 Return type
float, float

inv
()¶ Inverts the operation, such that the inverse will be used for the computations by the specific device.
This method concatenates a string to the name of the operation, to indicate that the inverse will be used for computations.
Any subsequent call of this method will toggle between the original operation and the inverse of the operation.
 Returns
operation to be inverted
 Return type
Operator

queue
()¶ Append the operator to the Operator queue.
Contents
Using PennyLane
Development
API
Downloads