Source code for pennylane.optimize.adam

# Copyright 2018 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at


# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
"""Adam optimizer"""

import autograd.numpy as np
from pennylane.utils import _flatten, unflatten
from .gradient_descent import GradientDescentOptimizer

[docs]class AdamOptimizer(GradientDescentOptimizer): r"""Gradient-descent optimizer with adaptive learning rate, first and second moment. Adaptive Moment Estimation uses a step-dependent learning rate, a first moment :math:`a` and a second moment :math:`b`, reminiscent of the momentum and velocity of a particle: .. math:: x^{(t+1)} = x^{(t)} - \eta^{(t+1)} \frac{a^{(t+1)}}{\sqrt{b^{(t+1)}} + \epsilon }, where the update rules for the three values are given by .. math:: a^{(t+1)} &= \frac{\beta_1 a^{(t)} + (1-\beta_1)\nabla f(x^{(t)})}{(1- \beta_1)},\\ b^{(t+1)} &= \frac{\beta_2 b^{(t)} + (1-\beta_2) ( \nabla f(x^{(t)}))^{\odot 2} }{(1- \beta_2)},\\ \eta^{(t+1)} &= \eta^{(t)} \frac{\sqrt{(1-\beta_2)}}{(1-\beta_1)}. Above, :math:`( \nabla f(x^{(t-1)}))^{\odot 2}` denotes the element-wise square operation, which means that each element in the gradient is multiplied by itself. The hyperparameters :math:`\beta_1` and :math:`\beta_2` can also be step-dependent. Initially, the first and second moment are zero. The shift :math:`\epsilon` avoids division by zero. For more details, see :cite:`kingma2014adam`. Args: stepsize (float): the user-defined hyperparameter :math:`\eta` beta1 (float): hyperparameter governing the update of the first and second moment beta2 (float): hyperparameter governing the update of the first and second moment eps (float): offset :math:`\epsilon` added for numerical stability """ def __init__(self, stepsize=0.01, beta1=0.9, beta2=0.99, eps=1e-8): super().__init__(stepsize) self.beta1 = beta1 self.beta2 = beta2 self.eps = eps = None = None self.t = 0
[docs] def apply_grad(self, grad, x): r"""Update the variables x to take a single optimization step. Flattens and unflattens the inputs to maintain nested iterables as the parameters of the optimization. Args: grad (array): The gradient of the objective function at point :math:`x^{(t)}`: :math:`\nabla f(x^{(t)})` x (array): the current value of the variables :math:`x^{(t)}` Returns: array: the new values :math:`x^{(t+1)}` """ self.t += 1 grad_flat = list(_flatten(grad)) x_flat = _flatten(x) # Update first moment if is None: = grad_flat else: = [self.beta1 * f + (1 - self.beta1) * g for f, g in zip(, grad_flat)] # Update second moment if is None: = [g * g for g in grad_flat] else: = [self.beta2 * f + (1 - self.beta2) * g * g for f, g in zip(, grad_flat)] # Update step size (instead of correcting for bias) new_stepsize = self._stepsize*np.sqrt(1-self.beta2**self.t)/(1-self.beta1**self.t) x_new_flat = [e - new_stepsize * f / (np.sqrt(s)+self.eps) for f, s, e in zip(,, x_flat)] return unflatten(x_new_flat, x)
[docs] def reset(self): """Reset optimizer by erasing memory of past steps.""" = None = None self.t = 0