Source code for pennylane.templates.subroutines.interferometer

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at


# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
Contains the ``Interferometer`` template.
import pennylane as qml

# pylint: disable-msg=too-many-branches,too-many-arguments,protected-access
from pennylane.templates.decorator import template
from pennylane.ops import Beamsplitter, Rotation
from pennylane.wires import Wires

def _preprocess(theta, phi, varphi, wires):
    """Validate and pre-process inputs as follows:

    * Check the shape of the three weight tensors.

        theta (tensor_like): trainable parameters of the template
        phi (tensor_like): trainable parameters of the template
        varphi (tensor_like): trainable parameters of the template
        wires (Wires): wires that the template acts on

        tuple: shape of varphi tensor

    n_wires = len(wires)
    n_if = n_wires * (n_wires - 1) // 2

    shape = qml.math.shape(theta)
    if shape != (n_if,):
        raise ValueError(f"Theta must be of shape {(n_if,)}; got {shape}.")

    shape = qml.math.shape(phi)
    if shape != (n_if,):
        raise ValueError(f"Phi must be of shape {(n_if,)}; got {shape}.")

    shape_varphi = qml.math.shape(varphi)
    if shape_varphi != (n_wires,):
        raise ValueError(f"Varphi must be of shape {(n_wires,)}; got {shape_varphi}.")

    return shape_varphi

[docs]@template def Interferometer(theta, phi, varphi, wires, mesh="rectangular", beamsplitter="pennylane"): r"""General linear interferometer, an array of beamsplitters and phase shifters. For :math:`M` wires, the general interferometer is specified by providing :math:`M(M-1)/2` transmittivity angles :math:`\theta` and the same number of phase angles :math:`\phi`, as well as :math:`M-1` additional rotation parameters :math:`\varphi`. By specifying the keyword argument ``mesh``, the scheme used to implement the interferometer may be adjusted: * ``mesh='rectangular'`` (default): uses the scheme described in `Clements et al. <>`__, resulting in a *rectangular* array of :math:`M(M-1)/2` beamsplitters arranged in :math:`M` slices and ordered from left to right and top to bottom in each slice. The first beamsplitter acts on wires :math:`0` and :math:`1`: .. figure:: ../../_static/clements.png :align: center :width: 30% :target: javascript:void(0); * ``mesh='triangular'``: uses the scheme described in `Reck et al. <>`__, resulting in a *triangular* array of :math:`M(M-1)/2` beamsplitters arranged in :math:`2M-3` slices and ordered from left to right and top to bottom. The first and fourth beamsplitters act on wires :math:`M-1` and :math:`M`, the second on :math:`M-2` and :math:`M-1`, and the third on :math:`M-3` and :math:`M-2`, and so on. .. figure:: ../../_static/reck.png :align: center :width: 30% :target: javascript:void(0); In both schemes, the network of :class:`~pennylane.ops.Beamsplitter` operations is followed by :math:`M` local :class:`~pennylane.ops.Rotation` Operations. The rectangular decomposition is generally advantageous, as it has a lower circuit depth (:math:`M` vs :math:`2M-3`) and optical depth than the triangular decomposition, resulting in reduced optical loss. This is an example of a 4-mode interferometer with beamsplitters :math:`B` and rotations :math:`R`, using ``mesh='rectangular'``: .. figure:: ../../_static/layer_interferometer.png :align: center :width: 60% :target: javascript:void(0); .. note:: The decomposition as formulated in `Clements et al. <>`__ uses a different convention for a beamsplitter :math:`T(\theta, \phi)` than PennyLane, namely: .. math:: T(\theta, \phi) = BS(\theta, 0) R(\phi) For the universality of the decomposition, the used convention is irrelevant, but for a given set of angles the resulting interferometers will be different. If an interferometer consistent with the convention from `Clements et al. <>`__ is needed, the optional keyword argument ``beamsplitter='clements'`` can be specified. This will result in each :class:`~pennylane.ops.Beamsplitter` being preceded by a :class:`~pennylane.ops.Rotation` and thus increase the number of elementary operations in the circuit. Args: theta (tensor_like): size :math:`(M(M-1)/2,)` tensor of transmittivity angles :math:`\theta` phi (tensor_like): size :math:`(M(M-1)/2,)` tensor of phase angles :math:`\phi` varphi (tensor_like): size :math:`(M,)` tensor of rotation angles :math:`\varphi` wires (Iterable or Wires): Wires that the template acts on. Accepts an iterable of numbers or strings, or a Wires object. mesh (string): the type of mesh to use beamsplitter (str): if ``clements``, the beamsplitter convention from Clements et al. 2016 ( is used; if ``pennylane``, the beamsplitter is implemented via PennyLane's ``Beamsplitter`` operation. Raises: ValueError: if inputs do not have the correct format """ wires = Wires(wires) M = len(wires) shape_varphi = _preprocess(theta, phi, varphi, wires) if M == 1: # the interferometer is a single rotation Rotation(varphi[0], wires=wires[0]) return n = 0 # keep track of free parameters if mesh == "rectangular": # Apply the Clements beamsplitter array # The array depth is N for l in range(M): for k, (w1, w2) in enumerate(zip(wires[:-1], wires[1:])): # skip even or odd pairs depending on layer if (l + k) % 2 != 1: if beamsplitter == "clements": Rotation(phi[n], wires=Wires(w1)) Beamsplitter(theta[n], 0, wires=Wires([w1, w2])) elif beamsplitter == "pennylane": Beamsplitter(theta[n], phi[n], wires=Wires([w1, w2])) else: raise ValueError(f"did not recognize beamsplitter {beamsplitter}") n += 1 elif mesh == "triangular": # apply the Reck beamsplitter array # The array depth is 2*N-3 for l in range(2 * M - 3): for k in range(abs(l + 1 - (M - 1)), M - 1, 2): if beamsplitter == "clements": Rotation(phi[n], wires=wires[k]) Beamsplitter(theta[n], 0, wires=wires.subset([k, k + 1])) elif beamsplitter == "pennylane": Beamsplitter(theta[n], phi[n], wires=wires.subset([k, k + 1])) else: raise ValueError(f"did not recognize beamsplitter {beamsplitter} ") n += 1 else: raise ValueError(f"did not recognize mesh {mesh}") # apply the final local phase shifts to all modes for i in range(shape_varphi[0]): act_on = wires[i] Rotation(varphi[i], wires=act_on)