# qml.CRY¶

class CRY(phi, wires)[source]

The controlled-RY operator

\begin{split}\begin{align} CRY(\phi) &= I_{1}\otimes RY_{2}(\pi / 2) ~\cdot~ CNOT_{12} ~\cdot~ I_{1}\otimes RY_{2}(-\pi / 2) ~\cdot~ CNOT_{12} \notag \\[10pt] &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\\ 0 & 0 & \cos(\phi/2) & -\sin(\phi/2)\\ 0 & 0 & \sin(\phi/2) & \cos(\phi/2) \end{bmatrix}. \end{align}\end{split}

Note

The subscripts of the operations in the formula refer to the wires they act on, e.g. 1 corresponds to the first element in wires that is the control qubit.

Details:

• Number of wires: 2

• Number of parameters: 1

• Gradient recipe: $$\frac{d}{d\phi}f(CR_y(\phi)) = \frac{1}{2}\left[f(CR_y(\phi+\pi/2)) - f(CR_y(\phi-\pi/2))\right]$$ where $$f$$ is an expectation value depending on $$CR_y(\phi)$$.

Decomposition

If the CRY gate is not supported on the targeted device, PennyLane will attempt to decompose the gate into RY and CNOT gates the following way: Parameters
• phi (float) – rotation angle $$\phi$$

• wires (Sequence[int] or int) – the wire the operation acts on

 base_name Get base name of the operator. do_check_domain eigvals Eigenvalues of an instantiated operator. generator grad_method grad_recipe inverse Boolean determining if the inverse of the operation was requested. matrix Matrix representation of an instantiated operator in the computational basis. name Get and set the name of the operator. num_params num_wires par_domain parameters Current parameter values. string_for_inverse wires Wire values.
base_name

Get base name of the operator.

do_check_domain = True
eigvals

Eigenvalues of an instantiated operator.

Note that the eigenvalues are not guaranteed to be in any particular order.

Example:

>>> U = qml.RZ(0.5, wires=1)
>>> U.eigvals
>>> array([0.96891242-0.24740396j, 0.96891242+0.24740396j])

Returns

eigvals representation

Return type

array

generator = [array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j], [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j]]), -0.5]
grad_method = 'A'
grad_recipe = None
inverse

Boolean determining if the inverse of the operation was requested.

matrix

Matrix representation of an instantiated operator in the computational basis.

Example:

>>> U = qml.RY(0.5, wires=1)
>>> U.matrix
>>> array([[ 0.96891242+0.j, -0.24740396+0.j],
[ 0.24740396+0.j,  0.96891242+0.j]])

Returns

matrix representation

Return type

array

name

Get and set the name of the operator.

num_params = 1
num_wires = 2
par_domain = 'R'
parameters

Current parameter values.

Fixed parameters are returned as is, free parameters represented by Variable instances are replaced by their current numerical value.

Returns

parameter values

Return type

list[Any]

string_for_inverse = '.inv'
wires

Wire values.

Returns

wire values

Return type

tuple[int]

 check_domain(p[, flattened]) Check the validity of a parameter. decomposition(theta, wires) Returns a template decomposing the operation into other quantum operations. Multiplier and shift for the given parameter, based on its gradient recipe. Inverts the operation, such that the inverse will be used for the computations by the specific device. Append the operator to the Operator queue.
check_domain(p, flattened=False)

Check the validity of a parameter.

Variable instances can represent any real scalars (but not arrays).

Parameters
• p (Number, array, Variable) – parameter to check

• flattened (bool) – True means p is an element of a flattened parameter sequence (affects the handling of ‘A’ parameters)

Raises
• TypeError – parameter is not an element of the expected domain

• ValueError – parameter is an element of an unknown domain

Returns

p

Return type

Number, array, Variable

static decomposition(theta, wires)[source]

Returns a template decomposing the operation into other quantum operations.

get_parameter_shift(idx)

Multiplier and shift for the given parameter, based on its gradient recipe.

Parameters

idx (int) – parameter index

Returns

multiplier, shift

Return type

float, float

inv()

Inverts the operation, such that the inverse will be used for the computations by the specific device.

This method concatenates a string to the name of the operation, to indicate that the inverse will be used for computations.

Any subsequent call of this method will toggle between the original operation and the inverse of the operation.

Returns

operation to be inverted

Return type

Operator

queue()

Append the operator to the Operator queue.